Bowen Gong

boweng@gmail.com · linkedin.com/in/bowen-gong · 480-335-2069

Research interests

Network Science, Social Network, Machine Learning, Natural Language Processing, Parallel Computing, Finite Element Analysis

Education

2016 - 2022	Rensselaer Polytechnic Institute – Troy, NY
	Ph.D. in Mechanical Engineering
	Advisor: Dr. Jie Lian GPA: 4.0 / 4.0
2019 - 2021	Rensselaer Polytechnic Institute – Troy, NY
	M.S. in Computer Science
	Advisor: Dr. Boleslaw Szymanski GPA: 4.0 / 4.0
2017 - 2021	Georgia Institute of Technology – Atlanta, GA
	M.S. in Computer Science
	Specification: Computing System GPA: 4.0 / 4.0
2014 - 2015	Arizona State University – Tempe, AZ
	M.S. in Mechanical Engineering
	GPA: 4.0 / 4.0
2010 - 2014	Huazhong Univ. of Sci. and Tech. – Wuhan, China
	B.S. in Mechanical Engineering
	Awards: Magna Cum Laude, Best Thesis of Hubei Province (top 1‰)

Work Experience

2015 – 2016 **Oak Ridge National Laboratory** – Oak Ridge, TN Research Assistant | Advisor: Dr. Zhili Feng

> • Utilized finite element analysis to optimize the shape and dimension of the highpressure hydrogen vessel using ABAQUS to reduce cost and mitigate stress concentration

> • Created finite element models to validate welding experiments, estimate temperature and stress distribution, and provide sound predictions for the future experiments

Research experience

2020 – 2021	Characterizing Topics in Social Media Using Dynamics of Conversation Advisor: Dr. Boleslaw Szymanski (RPI)
	• Extracted key response features that depict the dynamics of the conversation under different subreddits by analyzing a Reddit dataset containing 5K subreddits and 887M comments
	• Utilized machine learning to evaluate the effectiveness of the extracted response features, which show a 90% accuracy in predicting the genre of Reddit submissions
	• Clustered posts within a subreddit with response features, K-means, and PCA to identify the dominant topics within each subreddit
	• Applied the derived response features to accurately detect outlier posts and effi- ciently predict the viral posts
2019 - 2021	Modelling Epidemic Spread in Cities Using Public Transportation as a Proxy for Generalized Mobility Trends Advisor: Dr. Boleslaw Szymanski (RPI)
	• Developed a data-driven epidemiological model to assess the impact of human mo- bility on the spread of COVID-19
	• Calibrated the epidemic model with census and mobility data involving subway transit
	• Estimated the governing epidemic parameters that enable predictions of spread un- der different diffusion prevention strategies
	• Evaluated the impact of various policies, such as the mask mandates and lockdown to the pandemic spread
	• Predicted accurately the daily cases in NYC with the developed model and the mo- bility data
2019 - 2020	High Performance Parallel Computing for PDE Solver Advisor: Dr. Christopher Carothers (RPI)
	• Designed and developed a efficient parallel algorithm with CUDA and MPI to solve PDE equations. The computation cost reduced by 60% comparing to the serial algo- rithm • Evaluated the performance of the implemented algorithms based on the weak scaling and strong scaling study • Implemented the parallel I/O to allow massive con- current read/write operations to a common file
2016 – Present	The Development of Accident Tolerant Nuclear Fuels
	Advisor: Dr. Jie Lian (RPI)
	• Passionately working on improving mechanical and thermal performance of acci- dent tolerant fuel (ATF) for LWR. Actively exploring safer and reliable fuel forms with higher uranium density and enhanced oxidation resistance.

• Synthesized UO₂ pellets with spark plasma sintering (SPS) and studied the grain size effect on its mechanical properties at elevated temperatures with nano- and micro-indentation testing.

• Manufactured commercial-size UO₂ with SPS. Conducted microstructure and microchemical analysis to examine the uniformity of its density, grain size, and stoichiometry, demonstrating the potential of SPS to fabricate nuclear fuels cost-effectively.

• Analyzed additive impact on the thermal conductivity, mechanical property, and oxidation resistance of U_3Si_2 . The additives include Cr, BeO, Al, and UO_2 .

 \bullet Derived oxidation activation energy of microcrystalline and nanocrystalline $\rm U_3Si_2$ via kinetic analysis and isothermal TGA testing.

• Assessed the stability of Cr doped and Cr+Al doped U_3Si_2 in H_2O containing atmospheres with ramping/isothermal steam testing and evaluated the degradation mechanism of U_3Si_2 in H_2O .

 \bullet Studied thermal-induced and irradiation-induced grain growth of U_3Si_2 and derived the corresponding activation energies.

• Investigated irradiation-induced amorphization and subdivision of U_3Si_2 , along with the analysis of bubble formation and growth under the bombardment of Xe and Kr.

• Generated machine learning and regression models to examine the factors that govern the leaching behavior of pyrochlore, which can be used to predict and validate leaching experiment results.

• Familiar with characterization tools, such as SEM, TEM, and XRD. Frequently employed focused ion beam (FIB) to manufacture TEM samples.

Teaching experience

Spring 2022	Teaching Assistant, RPI
	Numerical Methods and Programming for Engineers
Fall 2021	Teaching Assistant, RPI
	Numerical Methods and Programming for Engineers
Spring 2021	Teaching Assistant, RPI
	Numerical Methods and Programming for Engineers
Fall 2020	Teaching Assistant, RPI
	Numerical Methods and Programming for Engineers
Spring 2020	Teaching Assistant, RPI
	Numerical Methods and Programming for Engineers
Spring 2018	Teaching Assistant, RPI
	Thermal fluid
Fall 2016	Teaching Assistant, RPI
	Thermal fluid

Publications

2022	[J30] Modelling epidemic spread in cities using public transportation as a proxy for generalized mobility trends
	Malik, O., Gong, B., Moussawi, A., Korniss, G., Szymanski, BK. Scientific Reports, under review
	[J29] A kinetic study of the oxidation of SPS-sintered U_3Si_2
	Gong, B., Zhao, D., Broussard, A., Harp, J., Nelson, A., Lian, J. Journal of Applied Physics, under review
	 [J28] High-temperature compressive creep tests of U₃Si₂ with spark plasma sintering: Experiments and Finite Element Modeling Gong, B., Zhao, D., Broussard, A., Harp, J., Nelson, A., Lian, J. Journal of Nuclear Materials
2021	[J27] Characterizing topics in social media using dynamics of conversation Flamino, J., Gong, B., Buchanan, F., Szymanski BK. <i>Entropy</i>
	[J26] UN and U ₃ Si ₂ composites densified by spark plasma sintering for
	accident-tolerant fuels
	Gong, B., Kardoulaki, E., Yang, K., Broussard, A., Zhao, D., Metzger, K., White, J.T., Sivack, M.R., Mcclellan, K.J., Lahoda, E.J., Lian, J. <i>Ceramic International</i>
	[J25] Cr-incorporated uranium nitride composite fuels with enhanced me-
	chanical performance and oxidation resistance
	Yang, K., Kardoulaki, E., Zhao, D., Gong, B., Broussard, A., Metzger, K., White, J.T., Sivack, M.R., Mcclellan, K.J., Lahoda, E.J., Lian, J. <i>Journal of Nuclear Materials</i>
	[J24] Micro-cantilever beam experiments and modeling in porous polycrys-
	talline UO ₂
	Gong, B., Frazer, D., Shaffer, B., Lim, H.C., Hosemann, P., Peralta, P. Journal of Nuclear Materials
	[J23] Machine learning-enabled prediction of chemical durability of $A_2B_2O_7$
	pyrochlore and fluorite
	Gong, B., Yang, K., Lian, J.A., Wang, J., 2021. Computational Materials Science

[J22] A systematic study of lanthanide titanates ($A_2Ti_2O_7$) chemical durability: corrosion mechanisms and control parameters

Yang, K., Lei, P., Yao, T., Gong, B., Wang, Y., Li, M., Wang, J., Lian, J. *Corrosion Science*

[J21] Elevated temperature nanoindentation creep study of plastically deformed and spark plasma sintered UO₂

Frazer, D., Shaffer, B., Gong, B., Peralta, P., Lian, J. and Hosemann, P. *Corrosion Science*

[J20] Aluminum-doped $\mathbf{U}_3\mathbf{Si}_2$ composite fuels with enhanced oxidation resistance

Mohamad, A., Yao, T., Gong, B., Harp, J., Wagner, A.R., Nelson, A.T., Lian, J. *Journal of Alloys and Compounds*

[J19] Fabrication and thermophysical properties of UO_2 - UB_2 and UO_2 - UB_4 composites sintered via spark plasma sintering

Kardoulaki, E., Frazer, D.M., White, J.T., Carvajal, U., Nelson, A.T., Byler, D.D., Saleh, T.A., Gong, B., Yao, T., Lian, J., McClellan, K.J.

Corrosion Science

[J18] 3Y-TZP Toughened and Oxidation-resistant U_3Si_2 Composites for Accident Tolerant Fuels

Mohamad, A., Gong, B., Yao, T., Wagner, A.R., Benson, M.T., Lian, J. Journal of Nuclear Materials

$2020 \qquad [J17] \ \mbox{Cr-doped } U_3 Si_2 \ \mbox{composite fuels under steam corrosion}$

Gong, B., Cai, L., Lei, P., Metzger, K.E., Lahoda, E.J., Boylan, F.A., Yang, K., Fay, J., Harp, J., Lian, J.

Corrosion Science

[J16] UO₂ + 5vol % ZrB₂ nano composite nuclear fuels with full boron retention and enhanced oxidation resistance

Yao, T., Gong, B., Lei, P., Lu, C., Xu, P., Lahoda, E., Lian, J. *Ceramics International*

[J15] Spark plasma sintering (SPS) densified U₃Si₂ pellets: Microstructure control and enhanced mechanical and oxidation properties

Gong, B., Yao, T., Lei, P., Harp, J., Nelson, A.T., Lian, J. Journal of Alloys and Compounds

[J14] U_3Si_2 and UO_2 composites densified by spark plasma sintering for accident-tolerant fuels

Gong, B., Yao, T., Lei, P., Cai, L., Metzger, K.E., Lahoda, E.J., Boylan, F.A., Mohamad, A., Harp, J., Nelson, A.T., Lian, J.

Journal of Nuclear Materials

$[J13] \mbox{ Development of a grain growth model for U_3Si_2 using experimental data, phase field simulation and molecular dynamics$

Cheniour, A., Tonks, M.R., Gong, B., Yao, T., He, L., Harp, J.M., Beeler, B., Zhang, Y., Lian, J.

Journal of Nuclear Materials

[J12] Thermophysical and mechanical property assessment of UB₂ and UB₄ sintered via spark plasma sintering

Kardoulaki, E., White, J.T., Byler, D.D., Frazer, D.M., Shivprasad, A.P., Saleh, T.A., Gong, B., Yao, T., Lian, J., McClellan, K.J. *Journal of Alloys and Compounds*

[J11] Spark plasma sintering-densified vanadinite apatite-based chlorine waste forms with high thermal stability and chlorine confinement

Lei, P., Yao, T., Gong, B., Zhu, W., Ran, G., Lian, J. Journal of Nuclear Materials

2019 [J10] Nano-and micro-indentation testing of sintered UO₂ fuel pellets with controlled microstructure and stoichiometry

Gong, B., Frazer, D., Yao, T., Hosemann, P., Tonks, M. and Lian, J. *Journal of Nuclear Materials*

[J9] In situ investigation of Water interaction with Lead-Free all inorganic perovskite ($Cs_2SnI_xCl_{6-x}$)

Zhu, W., Yao, T., Shen, J., Xu, W., Gong, B., Wang, Y., Lian, J. The Journal of Physical Chemistry C

[J8] Deciphering the degradation mechanism of the lead-free all inorganic perovskite Cs₂SnI₆

Zhu, W., Xin, G., Scott, S.M., Xu, W., Yao, T., Gong, B., Wang, Y., Li, M., Lian, J. *npj Materials Degradation*

2018 [J7] **In-situ TEM study of the ion irradiation behavior of U**₃**Si**₂ **and U**₃**Si**₅ Yao, T., Gong, B., He, L., Miao, Y., Harp, J.M., Tonks, M., Lian, J. *Journal of Nuclear Materials*

[J6] Consolidation of commercial-size UO₂ fuel pellets using spark plasma sintering and microstructure/microchemical analysis

Gong, B., Yao, T., Lu, C., Xu, P., Lahoda, E., Lian, J. MRS Communications

$[J5] \ \textbf{Radiation-induced amorphization of Langasite La}_{3}\textbf{Ga}_{5}\textbf{SiO}_{14}$

Yao, T., Lu, F., Zhang, H., Gong, B., Ji, W., Zuo, L., Lian, J. Journal of Nuclear Materials

[J4] Dense nanocrystalline UO_{2+x} fuel pellets synthesized by high pressure spark plasma sintering

Yao, T., Scott, S.M., Xin, G., Gong, B., Lian, J. Journal of the American Ceramic Society

[J3] Thermally-conductive and mechanically-Robust graphene nanoplatelet reinforced UO2 composite nuclear fuels

Yao, T., Xin, G., Scott, S.M., Gong, B., Lian, J. Scientific reports

[J2] Radiation-induced grain subdivision and bubble formation in U_3Si_2 at LWR temperature

Yao, T., Gong, B., He, L., Harp, J., Tonks, M., Lian, J. Journal of Nuclear Materials

2016 [J1] Effects of microstructural constraints on the transport of fission products in uranium dioxide at low burnups Lim, H.C., Rudman, K., Krishnan, K., McDonald, R., Gong, B., Peralta, P.

Journal of Nuclear Materials

Talks

2021 Synthesis of UN-U₃Si₂ Composite fuels by spark plasma sintering and properties characterization

Materials in Nuclear Energy Systems (MiNES), 2021