
Computational Materials Science 200 (2021) 110820

Available online 29 August 2021
0927-0256/© 2021 Elsevier B.V. All rights reserved.

Machine learning-enabled prediction of chemical durability of A2B2O7 
pyrochlore and fluorite 

Bowen Gong a,*, Kun Yang a, James A. Lian b, Jianwei Wang c 

a Department of Mechanical, Aerospace, Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA 
b Niskayuna High School, Niskayuna, NY 12309, USA 
c Department of Geology and Geophysics, Louisiana State University, LA 70803, USA   

A R T I C L E  I N F O   

Keywords: 
Machine learning 
Nuclear waste forms 
Pyrochlore and fluorite 
Leaching 
Chemical durability 

A B S T R A C T   

Pyrochlore-structure type and its derivative in a general formula A2B2O7 (A = rare earth elements and actinides; 
B = Ti, Sn, Zr, Hf, Pb, Si, etc.) display excellent structural flexibility and rich crystal chemistry as promising 
nuclear waste form materials capable of immobilizing actinides and fission products. It is essential to understand 
these materials’ chemical durability and element release of radionuclides in order to evaluate their performance 
in near-field environment. However, it is a formidable grand technological challenge to experimentally perform 
durability testing across hundreds of thousands of possibilities resulting from their extreme compositional 
complexities due to cation substitutions at both A and B-sites. In this work, we demonstrate a machine learning 
approach to determine the key materials parameters and structural characteristics governing the leaching be-
haviors from a small set of selected compositions as model systems, enabling a science-based prediction of their 
chemical durability that can be extended to a wide range of chemical compositions. The combination of four key 
structural characteristics and materials parameters, including ionic radius size difference rA− B, ionic potential 
difference EB− A, electronegativity difference χB− A, and lattice parameter α, creates features an optimized pre-
diction of the chemical durability. Two machine learning models, linear regression and Kernel ridge regression 
models, are trained on the randomly-split training dataset derived from the experimentally-determined 
elemental release rates, and subsequently tested on the testing dataset. The predicted leaching rates from both 
machine learning models show an excellent agreement with the experimental data, demonstrating the feasibility 
of rapidly evaluating the material properties of new compositions. These results highlight the immense potential 
of synergizing informatics through machine learning-based models and well-controlled experiments of selected 
model systems to accelerate materials design and discovery with optimized compositions and performance of 
promising materials for effective nuclear waste management.   

1. Introduction 

The safe disposal of the high-level waste (HLW) [1] from nuclear 
weapon production and used fuel reprocessing and excess Pu from 
weapon programs is the most daunting challenge [2] to the environ-
mental remediation due to their very complex waste streams, high 
radioactivity of over several hundreds of millions of curies and potential 
hazardous impacts to the geochemical environment. Long-lived actinide 
and transuranic elements (e.g., 24,100 years for Pu-239 and 2.14 million 
years for Np-237 [3]) are the major dose contributors after hundreds of 
thousands of years of waste storage. Among the many different materials 
proposed for the storage and immobilization of plutonium and HLWs, 

borosilicate glasses [4–6] and ceramics [7–9] are the most popular waste 
forms extensively studied. The liquid HLW can be encapsulated into 
borosilicate glass as the baseline waste form material destined for per-
manent geological disposition. Excess Pu and highly-enriched uranium 
from the weapon program and actinides from chemical processing of 
used fuels can be either reused as valuable resources in mixed oxide fuels 
(MOX) or incorporated into crystalline ceramic waste forms for per-
manent disposition in deep-underground repositories [10]. 

Materials for waste form applications typically require very complex 
crystal chemistry, structural flexibility, and thus capabilities to accom-
modate a wide range of waste elements with different valence states 
[11]. Waste form materials should have excellent radiation tolerance, 
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thermal stability, and well- maintained structural integrity in projected 
geological repository environments [12]. Ceramics with a general 
chemical form VIIIA2

VIB2
IVO7 (A = lanthanides or actinides; B = Ti, Sn, 

Zr, Hf, etc.) with fluorite or pyrochlore structures are promising waste 
form materials for actinide immobilization. The crystal structure of 
pyrochlore A2B2O7 is in a space group Fd-3 m with each unit cell con-
taining 8 molecules. Lanthanides and actinides are often occupied at the 
8-coordinated A-site; while Zr, Ti, and group 4A elements are often at 
the 6-coordinated B-site [1]. A2B2O7 pyrochlore can also transform to 
the parent fluorite structure upon the chemical disordering of the A- and 
B-site cations and randomization of the oxygen sublattice. A2B2O7 
pyrochlore and fluorite structure-types display rich crystal chemistry 
and structural flexibility with coupled substitution at both A- and B- 
sites. The phase and radiation stability of A2B2O7 structure-types can be 
manipulated by controlling the relative ionic size difference at both A- 
and B-sites or their ionic radius ratio (rB4+/rA3+). In addition to single- 
component systems, binary and multicomponent solid solutions occu-
pying at either A- or B-sites such as high entropy pyrochlore ceramics 
have been demonstrated that are capable of uranium incorporation [13]. 
The extreme compositional complexity results in several hundreds of 
thousands of possibilities and enables a large materials design window 
by controlling cation substitutions and structural characteristics in order 
to discover promising materials with optimized performance for effec-
tive nuclear waste management. 

Chemical durability is critical to evaluate the performance of waste 
form materials under a near-field environment of a geological re-
pository, and it can be generally assessed by elemental release rates 
through accelerated leaching test protocols such as static leaching (e.g., 
the product consistency test, semi-dynamic leaching following an ASTM 
C1308 protocol and dynamic leaching testing (e.g., single-pass flow 
testing) [14–19]. A science-based approach to evaluating materials’ 
chemical durability is essential to gain a fundamental understanding of 
degradation and corrosion mechanisms and kinetics, radionuclide 
confinement and release, and how different material parameters/ 
structural characteristics affect their chemical durability, in order to 
optimize waste form design and predict their performance [20]. 
Extensive data in the literature have been reported for the chemical 
durability of pyrochlore and fluorite structural types in a general for-
mula of A2B2O7 [21–27]; however, materials are often tested by 
different protocols with different environmental variables (such as 
temperature, surface area/leachate volume ratios, leachates), sample 
geometries (e.g., powders vs. densified pellets) and microstructure. The 
experimentally determined elemental release rates may vary by several 
orders of magnitudes for the same materials, making various experi-
mental data not comparable and creating challenges to achieve mech-
anistic understanding and predict materials’ performance. Therefore, it 
is essential to test materials having similar microstructure and geometry 
and to use the same protocol with controlled environmental variables. 

However, chemical durability testing typically requires a great 
amount of time and effort in order to assess materials’ potentials for 
waste form applications. It is a huge scientific challenge and technically 
infeasible to perform leaching experiments across hundreds of thou-
sands of possibilities of the pyrochlore and fluorite structure types given 
their composition complexity with a large design window of composi-
tions. A computational-based approach by considering key materials 
and structural characteristics governing materials’ chemical durability 
is highly desirable to accelerate materials design and discovery in order 
to optimize materials compositions and performance. Recently, machine 
learning has become an indispensable technique in accelerating the 
design of new materials and evaluating materials properties for nuclear 
waste form development with respect to the traditional trial and error 
approaches [28]. Data-driven machine learning approaches have 
become the fourth paradigm along the material science development 
path, following the pure empirical (via observations), formula and laws, 
and computational science paradigms [29]. In certain circumstances, 
data-driven approaches such as machine learning would be appropriate 

and more efficient [30]. This is of particular interest for material prop-
erties difficult to be measured experimentally or affected by complicated 
phenomena where no simple governing equations are available. For 
example, in the scenario of diverse crystal chemistry and composition 
complexity of the A2B2O7 structural types and unrevealed corrosion 
mechanisms and kinetics, data-driven processes are necessary to predict 
materials performance and accelerate materials design and discovery. 

Machine learning approaches have been applied to the design of 
ceramic waste form materials and the prediction of properties (e.g., 
radiation tolerance and chemical durability) by building machine 
learning models, analyzing experimental data, and predicting their 
performance. For example, on waste form design, artificial neural 
network (ANN) has been employed to predict new apatite and hollandite 
compositions out of a wide range of possibilities. In particular, a crystal 
chemistry approach has been applied using ANN to explore the 
compositional space of promising hollandite and apatite compositions 
for iodine and Cs incorporations [31,32]. Lillington et al. used machine 
learning algorithms to predict the static and dynamic leaching behavior 
of borosilicate glass matrix [33] and assessed the performance with a 
large set of data available in the literature [34]. However, the datasets 
may be obtained from multiple sources, and non-uniform or inconsistent 
data acquisition processes raise questions concerning the quality and 
accuracy of these datasets. Lumpkin et al. [35] studied the correlation 
between radiation tolerance and a series of parameters such as elec-
tronegativity difference and disorder energy. Regression models were 
generated based on experimental data, and statistical models were 
derived to predict the critical temperature in radiation, an essential 
performance indicator for pyrochlore and fluorite structure-based waste 
form materials. These models generally achieve > 90% R2 and demon-
strate exceptional predictability despite the fact that the linear regres-
sion model is constrained when the correlations among parameters 
become more complex. Krishnan et al. [36] utilized multiple machine 
learning models, including linear, support vector machine, artificial 
neural network, etc., to predict silicate glass leaching kinetics. Although 
simple models such as linear regression may not lead to a reasonable 
predictive capability, additional physics-based constraints might greatly 
improve the performance. Zhang et al. established a data-driven model 
with a large dataset to evaluate and predict the chemical durability of 
oxide glasses [37]. The authors trained and tested various machine 
learning models, including random forest (RF), artificial neural network 
(ANN), and k-nearest neighbors (KNN). Among different models, the 
ANN model has the highest accuracy in modeling the weight loss of the 
glass under different chemical conditions, while RF has higher accuracy 
in determining the glass surface appearance change. RF and ANN models 
were not considered here because of the limited database in the current 
work. As a rule of thumb, with a limited database, traditional statistical 
models such as linear regression or logistic regression, as well as support 
vector machine performing kernel trick, are more suitable than more 
advanced models such as ANN or RF. Tree-based models are more 
appropriate to be applied on the middle-size dataset, while ANN 
generally has more applications when large datasets are available. 

In this work, machine learning models are developed based on a set 
of limited data of chemical durability of 30 compositions in a general 
formula of A2B2O7 ranging from single component rare earth (Sm to Yb) 
titanates, zirconates, and stannates to multiple component solid solu-
tions and high entropy ceramics. These 30 compositions of pyrochlores 
and fluorite structural types were synthesized by spark plasma sintering 
(SPS) with similar microstructure and grain size. The as-purchased rare 
earth oxides and TiO2 precursor powders were first pre-reacted via high- 
energy ball milling following by the SPS consolidation at different 
temperatures, duration, and pressure. The detailed materials synthesis 
and characterization can be found in our previous publications [38]. All 
the sample pellets were polished following the same procedure before 
conducting semi-dynamic leaching tests. Chemical durability and 
elemental release were determined at identical experimental conditions 
using the same semi-dynamic leaching testing protocol, providing a 
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scientific basis for evaluating materials performance and understanding 
their dissolution kinetics and elemental release behavior 
[26,27,35,39–44]. The details of the semi-dynamic leaching tests can be 
referred to in previous literature [38,45]. The semi-dynamic leaching 
tests were conducted in a closed cap PTFE vial in a digital controlled 
oven at a temperature of 90 ◦C. The surface area/volume ratio for the 
leaching test is 5.0, with the leachate being exchanged per three hours 
for the first 24 h and per day for the rest 14 days. The leachates were 
then analyzed through an ICP-MS in order to quantify the elemental 
concentration. The experimentally determined short-term and long- 
term leaching rates of the A-site cations are tabulated in Table 1, 
along with the materials and structural parameters used as the input 
parameters and structural descriptors to the machine-learning models. 
Despite a small set of data across 30 compositions, the structural char-
acteristics can be well correlated to cation substitution at both A- and B- 
sites within a confined structure. Therefore, machining learning models 
can be derived with a high fidelity based on both short-term and long- 
term leaching rates of each composition, enabling the prediction of 
materials’ chemical durability of hundreds of thousands of compositions 
of the A2B2O7 structure types. 

To realize this, the small set of leaching rate data were randomly 
divided into training and testing datasets, which then are used to train 
and test machine learning models. The performance of the models is 
evaluated based on the predictability on the testing datasets not used for 
training the models. The results indicate that the models have reason-
able predictability, demonstrating the great potential of using machine 
learning approaches to estimate the leaching rates of the A2B2O7 
structure types in order to speed up the materials discovery and per-
formance prediction. Key parameters as summarized in Table 1, such as 
ionic radii size difference rA− B, ionic potential difference EB− A, electro-
negativity difference χB− A, and lattice parameter α, are considered as the 
structural descriptors for the machining learning model development 
and key factors governing materials’ chemical durability and 

leachability are revealed based on the minimized root mean square er-
rors. These four features were selected because they are very funda-
mental and important structural and energetic properties of the 
material, which determines the performance of the materials in many 
aspects, such as the amorphization resistance [46]. In a recent paper 
identifying the critical features for predicting the glass-forming ability 
[47], the authors used an approach to use RF models for feature selec-
tion. The new model was reported to have a 12% increase in prediction 
accuracy. In this work, additional parameters such as the bond-valence 
sum of lanthanides and oxygen positional parameters were also 
considered, which do not produce more accurate prediction. Due to the 
limited datasets, only the aforementioned 4 features were selected to 
train the model to avoid possible overfitting, as more features generally 
require larger datasets. The derived linear regression and Kernel ridge 
regression (KRR) models can be used to predict the short-term and long- 
term leaching rates for other components, making it feasible to identify 
the most suitable compositions with optimized materials chemical 
durability as required for waste form materials for long-term nuclear 
waste management. 

2. Computational methods 

Among different machine learning algorithms, linear regression is 
widely used to combine different factors with various weights, which is 
simple to implement. The general form of multivariate linear regression 
with n variables is shown in formula (1), where Xi and Y are the corre-
sponding input variables and the output variable, β0 is known as the 
intercept, and βi are the fitting coefficients. The regression algorithm 
normally fits the linear model with coefficients that can minimize the 
residual sum of squares between the predicted values and the observa-
tions. IN this work, the linear regression models for both short-term and 
long-term leaching data (Table 1) of the A2B2O7 structure type were 
generated with a Scikit-learn machine learning package [48]. 

Table 1 
The summary of leaching behavior and key parameters of various families of Pyrochlores obtained through semi-dynamic leaching following an ASTM C1308 protocol 
and dynamic leaching testing. The data for Ti and Zr families was reported in [38,45] while the other data are under preparation for publication.  

Element A rA - rB Ionic (B - A) Electronegativity (B - A) lattice 
parameter 

short term rate (mmol/m2/ 
hr) 

long term rate (mmol/m2/ 
d)         

Ti Sm  0.474  3.8312  0.49  10.23  0.240  0.015  
Gd  0.448  3.7625  0.46  10.19  0.193  0.011  
Dy  0.422  3.6904  0.43  10.08  0.125  0.006  
Er  0.399  3.6235  0.41  10.07  0.114  0.005  
Yb  0.380  3.5659  0.39  10.04  0.092  0.005  
Sm,Yb  0.427  3.6986  0.44  10.14  0.163  0.008  
Sm,Yb,Gd  0.434  3.7206  0.45  10.15  0.186  0.010  
Sm,Yb,Gd,Er  0.425  3.6956  0.44  10.13  0.160  0.008  
Sm,Yb,Gd,Er,Dy  0.424  3.6946  0.44  10.13  0.149  0.008 

Zr Nd  0.389  2.8550  0.10  10.67  0.174  0.009  
Sm  0.359  2.7796  0.08  10.59  0.167  0.004  
Gd  0.333  2.7109  0.05  10.53  0.043  0.004  
Dy  0.307  2.6388  0.02  9.93  0.042  0.003  
Er  0.284  2.5719  0.00  9.79  0.010  0.000  
Yb  0.265  2.5143  − 0.02  9.66  0.007  0.000 

Sn La  0.470  3.2110  0.99  10.71  0.393  0.012  
Nd  0.419  3.0920  0.66  10.58  0.380  0.010  
Sm  0.389  3.0166  0.64  10.52  0.285  0.010  
Gd  0.363  2.9479  0.61  10.46  0.300  0.011  
Dy  0.337  2.8758  0.58  10.40  0.323  0.006  
Er  0.314  2.8089  0.56  10.36  0.255  0.004 

U doping Yb  0.380  3.5704  0.38  10.05  0.150  0.005  
Sm, Yb  0.435  3.6674  0.42  10.14  0.201  0.010  
Sm, Yb, Gd  0.442  3.6878  0.43  10.18  0.236  0.009  
Sm, Yb, Gd, Er  0.434  3.6647  0.42  10.16  0.224  0.009  
Sm, Yb, Gd, Er, Dy  0.423  3.6928  0.43  10.08  0.149  0.013 

Zr (Sm, Yb)2Zr2O7  0.312  2.6469  0.03  10.13  0.120  0.002  
(Sm, Yb, Gd)2Zr2O7  0.319  2.6683  0.04  10.26  0.148  0.003  
(Sm, Yb, Gd, Er)2Zr2O7  0.310  2.6442  0.03  10.12  0.140  0.002  
(Sm, Yb, Gd, Er, Dy)2Zr2O7  0.309  2.6431  0.03  10.04  0.110  0.002  
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Y = β0 +
∑n

i=1
Xiβi (1) 

When linear regression is not adequate in capturing complex re-
lationships, other machine learning methods can be used to model 
nonlinear relations between the output and input. Kernel ridge regres-
sion (KRR) model is one of these machine learning models, which has 
been widely applied in the literature to train and predict various prop-
erties of materials. For example, Rupp et al. [49] used the KRR model to 
predict the atomization energies of organic molecules based on 2 pa-
rameters. Stuke et al. [50] studied the molecular orbital energy using 
data from several large databases to explore the energy of molecules and 
accelerate the material analysis process. Pilania et al. used KRR models 
to determine the amorphization behavior of pyrochlores [46]. Giguere 
et al. proposed a new kernel to be used in KRR, which generalized many 
of the common kernels. These authors demonstrated that KRR is better 
than a support vector regression (SVR) model in the sense of easy tuning 
and better predicting performance. The principle of KRR is to include 
regularization to the coefficients through introducing penalty terms 
[51]. The KRR estimator is written in Eq. (2) [52], where xi and yi are 
pairwise covariates and the response variable, λ is the regularization 
parameter, and H stands for the kernel Hilbert space. In the current 
work, five-fold cross-validation with a validation set size being 20% was 
used to protect against overfitting and to tune the hyperparameter that 
governs the KRR kernel, including regularization strength, kernel type, 
and gamma that is the inverse of the standard deviation of a Gaussian 
function. Grid search was applied to find the best combination of the 
hyperparameters. For both linear and KRR models, all features were pre- 
standardized such that each feature centered at the corresponding mean 
with a standard deviation. The standardization is a general and common 
approach for data preprocessing since many kernels and regularizers 
require predictors to have variance in similar magnitude. 

f̂ := argmin

{
1
N

∑N

i=1
(f (xi) − yi )

2
+ λ||f | |2H

}

(2)  

2.1. Training and testing datasets 

The overall dataset contained 30 data points, which were obtained 
through semi-dynamic leaching experiments (see Table 1) [43,44] and 
was divided into two subsequent datasets. The training dataset consists 
of 24 data points, occupying 80% of the total dataset. On the other hand, 
the testing dataset consists of 6 data points (20% of the total dataset). All 
the leaching rates used in machine learning were derived from the lab- 
scale 14-day semi-dynamic leaching tests, in which we strictly followed 
the procedure reported in our previous research [38,45]. Both the short- 
term and long-term leaching rates can be found in Table 1. The input 
data considered here include ionic radius difference rA− B, ionic potential 
difference EB− A, electronegativity difference χB− A, and lattice parameter 
α. The response variables are short-term leaching rates and long-term 
leaching rates, with units being mmol⋅m− 2⋅hour-1 and mmol⋅m-2day− 1, 
respectively. The lattice parameters were derived from the XRD peak 
refinements. The other factors, including ionic radius, electronegativity 
difference, and ionic potential difference, were found from the literature 
[53–56]. 

2.2. Feature selection and hyperparameter tuning 

Four key materials parameters were considered as the most impor-
tant factors governing the leaching behavior of the A2B2O7 structure 
types. However, the role played by each factor may have different sig-
nificance. In order to avoid potential overfitting, feature selection from 
these properties was performed to progressively filter out the factors 
that are with the least significance. The feature selection for the linear 
model was based on a leave-one-out version of the cross-validation, 
where the training dataset was further divided into a smaller training 

set and a validation set of size one. For a training dataset with size N, 
there are N different ways for the division, and thus the cross-validation 
error is given in equation (3), where en denotes the error on each vali-
dation set and can be calculated using squared differences between the 
predicted value and the observed value. For the RKK model, 5-fold cross- 
validation was used. The process of hyperparameter tuning involves the 
selection of a set of optimal hyperparameters for a specific learning 
problem. For the RKK model, grid search, an exhaustive search over 
designated parameter ranges, was adopted. Specifically, the hyper-
parameter α and γ were tuned, with the former being the regularization 
strength that reduces variance and avoids overfitting and the latter 
being a parameter for the RBF kernel that defines the influence of a 
single training data point. The searching range for α is from 1E to 3 to 1, 
with a linear increment of 1E-3, while the searching range for γ is from 2- 

5 to 25 with a proportional increment of 2. 

Ecv =
1
N

∑N

n=1
en (3)  

3. Results and discussion 

We first show the correlation of the long-term and short-term 
leaching rates of all the samples against each individual feature, as 
shown in Fig. 1. Although simple correlations can be obtained between 
the leaching rate and each feature, no single feature is adequate to 
individually predict the long-term and short-term leaching behavior. For 
example, in Fig. 1A, the long-term leaching rate shows an excellent 
correlation with ionic radius difference (rA-B), but the short-term 
leaching rate shown in Fig. 1E suggests that Sn-based pyrochlore has a 
different response than the other compositions. Both the long-term and 
short-term leaching rates increase when the ionic radius difference in-
creases, as indicated in Fig. 1A and E. It has been suggested that 
chemical durability is related to both the metal–oxygen bonding energy 
and metal–metal repulsion [57]. Since the A-O distance in the A2B2O7 
structure decreases with the incorporation of smaller A-site cations 
(from La to Yb), an increase in the A-O bonding energy is anticipated 
[58]. The stability of the A2B2O7 structure-types strongly depends on the 
ionic radius difference between the A-site and B-site elements. As the 
cations at A and B sites become more similar in size, the structure is 
changed from the ordered pyrochlore superstructure to an anion defi-
cient fluorite structure by disordering the A-site and B-site cations and 
the oxygen sublattice. The order to disorder transition of its crystalline 
structure and the oxygen displacement from the nearest neighbor site 
leads to enhancement of materials’ radiation tolerance and may also 
affect its chemical durability [59]. The A-O bonding length gradually 
decreases as the bonding strength increases with a small A-site ionic 
radius, which can be confirmed by the previous research [60]. However, 
the difference of Sn-based pyrochlore structure with respect to other 
compositions shown in Fig. 1E suggests a significant influence of 
order–disorder transition on materials’ chemical durability due to the 
potentially strong impact of B-site elements. Both long-term and short- 
term leaching rates are positively correlated with the feature ionic po-
tential difference EB− A (Fig. 1B and F), and the slope of the leaching data 
of each family is close. However, there is an obvious separation between 
the Ti-based family and the other families of the A2B2O7 structural types. 
The same observation can be found for the electronegativity difference, 
where the Zr-based family is distinct from the other families (Fig. 1C and 
G). Lastly, for the feature lattice parameter, short-term leaching 
behavior is reasonably correlated with the lattice parameter shown in 
Fig. 1H, but the long-term behavior does not show a very meaningful 
correlation. In the previous research conducted by Brik et al. [60], the 
lattice parameter can be described by ionic radius and the difference of 
electronegativity of the cations. Lattice parameter has a positive corre-
lation to ionic radii of both A-site and B-site cations, while a negative 
correlation can be observed for electronegativity as suggested by the 
model in a previous study [60]. Therefore, the study herein is generally 
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consistent with the discovery in which materials’ chemical durability is 
strongly correlated to the bonding strength. Specifically, the metal-
–oxygen bonds (A-O bonds) in the coordinated polyhedron become 
stronger by reducing the A-site ionic radius and thus greater ionic po-
tential, resulting in lower elemental release rates [55]. On the other 
hand, electronegativity reflects the bonding nature of atomic pairs in 
oxides, which can also be related to bonding types and bonding length. 
The electronegativity of elements can be characterized by ionization 
potential and electron affinity. The ionization potential is fairly related 
to the covalent radius, from which it is reasonable to infer that elec-
tronegativity is strongly associated with chemical durability [61]. 
Therefore, the higher of the ionic potential and electronegativity of 
lanthanides with reduced ionic radii from La to Yb, the stronger will be 
the covalent bonds between A-site element and oxygen, which results in 
lower leaching rates for the short term and long term as well. In addition 
to ionic potential and electronegativity difference, a systematic increase 
in the electron density at the A-site nuclei is anticipated based on the 
variation in bonding length and the reduction in atomic volume. How-
ever, the long-term leaching behavior is not fully correlated to the na-
ture of the bonding due to complications resulting from different surface 
alteration behavior. Particularly, titanate pyrochlore is more prone to 
form an amorphous surface passivation film, greatly reducing the long- 
term leaching rates compared to zirconates [38,45]. Therefore, the 
strong covalent bonding within the A2Zr2O7 may not necessarily result 
in a lower long-term leaching rate when compared with isostructural 
titanate compositions, and this is consistent with a previous result that 
the long term release rates of Gd2Zr2O7 and Gd2Ti2O7 are comparable 
[62]. Overall, all features demonstrate some predictability in estimating 
leaching behaviors of the A2B2O7 structure-types, but no single feature is 
sufficient to individually make reliable predictions across a wide range 
of A2B2O7, showing extreme composition complexity. 

Apart from the single variable regression, regressions with 2 vari-
ables were also derived to determine the interrelationship between the 
response leaching rate and multiple dependent input variables. Fig. 2 
shows the contour mapping with the response variable being the long- 
term and short-term leaching rates and predictor variables being ionic 
radii of the A cation and B cation. Except for the original 30 data points, 
the other data points are obtained through a scattered interpolation tool 
in MATLAB®, which generates an interpolating function that can be 

efficiently used to query values of the response variable. Several ob-
servations can be made from Fig. 2. A larger value of radius A and radius 
B generally leads to a higher leaching rate for long-term leaching. This 
can be attributed to the smaller bonding energy in the larger-sized 
lanthanide-oxygen bond (e.g., La-O) over those Yb-O and Er-O bonds. 
The metal–metal repulsion also decreases between A- and B-site cations 
from La2B2O7 to Yb2B2O7 [58], reducing the elemental release rate. A 
small discrepancy can be observed in Fig. 2C where radii of A-site cat-
ions are in the range of 1.01 to 1.05 and radii of B-site cations are in the 
range of 0.67 to 0.7, corresponding to the deviation shown in Fig. 1E 
where the Sn-based family shows a different response than the other 
families. 

3.1. Results of multivariate linear regression and machine learning 

More complicated correlations between predictors and response 
variables can be depicted using multivariate linear regressions. In order 
to determine a combination of the features that has the best perfor-
mance, the approach described in [46] was applied, where the root 
mean square error (RMSE) for the predictions on training and testing 
sets were used to determine the best combination of features. The per-
formance of each feature combination trained on the same randomly- 
split training dataset and evaluated on the training dataset and the 
validation dataset is displayed in Fig. 3. Adding more features to the 
combination reduces the RMSE in general. However, attention needs to 
be paid to avoid overfitting as too many features may possibly lead to 
reduced reliability of the prediction power. Fig. 3A shows the results of 
the feature selection for the long-term linear model. For models with a 
single feature, the model with ionic radius difference rA− B has the best 
performance, suggesting that the ionic radius difference rA− B has the 
best predictability in determining the long-term leaching rate, which is 
consistent with the observations in Fig. 1A and 1E. On the other hand, 
the other three 1-D models with a higher RMSE do not show good per-
formance when these features are used alone. Considering the group of 
2D models, it can be observed that the first three models containing 
ionic radius difference have better performance than the other three 
models. This further confirms that the feature ionic radius difference is 
the most significant one dominating the long-term leaching behavior. 
This is due to the fact that ionic radius has a significant impact on the 

Fig. 1. The correlations between the long-term leaching rate (A-D) and short-term leaching rate (E-H) with 4 material parameters/structural features, including ionic 
radius difference, ionic potential difference, electronegativity difference, and lattice parameter. No single feature is solely adequate to predict long-term and short- 
term leaching behavior. 
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metal–oxygen bonding energy, consistent with the previous research 
conducted by Chakoumakos [57]. Although lattice parameter has a 
strong correlation to the ionic radius difference, other factors, including 
electronegativity and ionic potential, also play important roles in gov-
erning the changes in lattice parameter [60]. For the group of the 3D 
models, it can be observed that the feature combination of ionic radius 
difference rA− B, ionic potential difference EB− A, and electronegativity 
difference χB− A, has the best performance with the lowest RMSE. On the 
contrary, the other three models with lattice parameter have elevated 
RMSE values. Further increasing the number of features leads to a 
limited effect on the diminishment in the RMSE. Finally, the lowest 
RMSE for all combinations of features is achieved with all four features. 
Thus, all 4 features with ionic radius size difference rA− B, ionic potential 
difference EB− A, and electronegativity difference χB− A, and α, will be 
used to train the model. The overall performance of the KRR model is 
similar to that of the linear model, which indicates that the correlation 
among predictors and the response variables is not complicated, mostly 
linear in nature. The RMSE results from the KRR model are slightly 
different from the linear model. For example, in the 1D group, the 
parameter ionic potential difference EB− A leads to the lowest RMSE, 
deviating from the linear model. This suggests that different regression 

models have different predictabilities and thus different performance 
with the same predictors. The results are similar for short-term leaching 
rates. The lowest RMSE is achieved with the combination of all four 
parameters. 

The linear regression models for long-term and short-term leaching 
rates are shown in formula (4–5). From the explicit models below, for 
both long-term and short-term leaching, the leaching rate is positively 
associated with ionic radius and electronegativity differences, while 
negatively related with ionic potential difference between A- and B-site 
cations. The R-squared value for long-term and short-term leaching 
using linear regression is 0.867 and 0.893, respectively, indicating that 
the models are appropriate and suitable to explain the training data. 

Kl = − 0.0200+ 0.0565(rA− B) − 0.0021(EB− A)+ 0.0036(χB− A) − 0.0010(α)
(4)  

Ks = − 0.5985+ 0.4461(rA− B) − 0.0801(EB− A)+ 0.2915(χB− A)+ 0.0742(α)
(5) 

The performance of both regression models was subsequently eval-
uated by predicting leaching rates based on the input of the testing set. 
Fig. 4A shows the plot comparing the true data obtained from 

Fig. 2. 2D and 3D contour maps of the long-term and short-term leaching rates vs. ionic radii A and ionic radii B. All contour maps were constructed from 
experimentally-measured leaching data and the interpolated data generated using a scattered interpolation tool in MATLAB. 
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experiments, along with the predicted values from the linear regression 
and KRR models for long-term leaching. The data from the training set 
are shown in solid symbols, while the data from the testing set are shown 
in the corresponding open-circle symbols. All of the data are arranged in 
an ascending order of the values. It can be seen that the predicted values 
from both models match well with the experimental values. The linear 
model achieves an R-squared value of 83%, and the KRR model achieves 
81%, which suggests that the majority of the variance in the long-term 
leaching rate can be explained by these four predictors. KRR displays 
a slightly lower R-squared value than linear regression. However, this 
does not necessarily mean that KRR has worse performance than the 
linear model all the time, since the dataset split is random, and the linear 
model may have a better response in another dataset split. Fig. 4B shows 
the relative error of each model with respect to the experimental data. 
The majority of the error is in the range of 1% to 10%, indicating that 
both models have excellent predictability. Fig. 4C displays the parity 
plot, along with a reference line (y = x) to facilitate visualization. The 
more data points close to the reference line, the better the prediction is. 
The majority of the data points are either on or close to the reference 
line, which clearly indicates that both models can reasonably predict the 
long-term leaching rate. No obvious differences can be found between 
the training set and testing set, suggesting no overfitting in both models. 
Similar to long-term leaching experiments, the short-term leaching re-
sults are shown in Fig. 4D, where one can find that both models can 

make accurate predictions on the leaching rate. The linear model ach-
ieves an R-squared of 85%, and the KRR model achieves 87%. This 
further confirms that the linear regression and machine learning models 
are capable of predicting the leaching behavior of A2B2O7 structural 
types and have comparable performance. Fig. 4E shows the relative 
error in the short-term leaching rate. The majority of the error is in the 
range of 1% to 15%. Several outliers show higher errors mainly because 
the experimental value of these data points is very small, leading to 
higher relative error. From the parity plot shown in Fig. 4F, one can see 
that the data points are very close to the reference line, indicating all the 
predicted values from linear and KRR models are very close to their 
corresponding experimental values. As in the case of long-term leaching, 
no obvious distinction is observed between the training set and the 
testing set, suggesting no overfitting in the models. 

The statistical and machine learning approaches are applied to both 
long-term and short-term leaching scenarios and achieve reasonable 
predictability. This demonstrates the robustness and validity of the ap-
proaches, which can be used for the exploration of other properties of 
pyrochlores. Considering only four parameters used, it would be bene-
ficial and simple in determining the leaching performance of other un-
explored A2B2O7, including multicomponent solid solution oxides across 
a wide range of design space, as long as the data of the aforementioned 
four input variables are available. 

Fig. 3. Average RMSE obtained from the linear regression and KRR models trained with various combinations of features to the randomly-split training and vali-
dation dataset. Specifically, RMSE was evaluated based on (A) a long-term linear model, (B) a short-term linear model, (C) a long-term KRR model, and (D) a short- 
term KRR model when predicting the leaching rates. Both training error and validation errors are shown, and the combination of all 4 features leads to the 
lowest RMSE. 
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4. Conclusions 

A systematic machine learning investigation has been carried out to 
search for the most significant parameters of the A2B2O7 structural types 
that govern their corrosion performance and materials’ chemical dura-
bility based on a limited set of elemental release rates obtained under 
identical leaching testing. Both long-term and short-term leaching rates 
are evaluated, and their corresponding correlations with the key struc-
tural and compositional parameters are analyzed. Four parameters are 
determined to be the most critical, governing the leaching rates with 
model validation, which include ionic radius difference, ionic potential 
difference, electronegativity difference between A-site and B-site cat-
ions, and their lattice parameters. The experimental data are further 
used to construct two machine learning models based on randomly split 
training and testing datasets. All four features are necessary for pre-
dicting the short-term and long-term leaching rates, with ionic radius 
difference, ionic potential difference, and electronegativity difference 
between A-site and B-site cations demonstrate a positive correlation to 
the elemental release rates. Generally, the modeling can well predict the 
trend of the elemental release rates experimentally determined from 
Sm2Ti2O7 with the highest elemental rate (0.015 mg/m2/d) and to 
Yb2Zr2O7 with the lowest rate (0.00001 mg/m2/d). The test datasets 
indicate that the machine learning models can achieve an overall R- 
squared higher than 80%, suggesting excellent predictabilities, and the 
relative errors between the experimental and the predicted values are 
approximately 10%. The explicit multivariate linear model derived can 
be utilized to quickly predict the leaching rates of the A2B2O7 structural 
types with identified key materials and structural parameters as the 
modeling descriptors. These results highlight that machine learning 
techniques can be applied to predict material properties (e.g., chemical 
durability in this work) with reasonable accuracy. This approach 

provides a practical tool to reduce the experimental efforts and predict 
the performance of materials across a wide range of materials with 
extreme composition complexity in order to accelerate materials dis-
covery with a large design window. 
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